Heterogeneous fractionation profiles of meta-analytic coactivation networks
نویسندگان
چکیده
Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication.
منابع مشابه
Human pulvinar functional organization and connectivity.
The human pulvinar is the largest thalamic area in terms of size and cortical connectivity. Although much is known about regional pulvinar structural anatomy, relatively little is known about pulvinar functional anatomy in humans. Cooccurrence of experimentally induced brain activity is a traditional metric used to establish interregional brain connectivity and forms the foundation of functiona...
متن کاملTask vs. rest—different network configurations between the coactivation and the resting-state brain networks
There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon pu...
متن کاملFunctional Decoding and Meta-analytic Connectivity Modeling in Adult Attention-Deficit/Hyperactivity Disorder.
BACKGROUND Task-based functional magnetic resonance imaging (fMRI) studies of adult attention-deficit/hyperactivity disorder (ADHD) have revealed various ADHD-related dysfunctional brain regions, with heterogeneous findings across studies. Here, we used novel meta-analytic data-driven approaches to characterize the function and connectivity profile of ADHD-related dysfunctional regions consiste...
متن کاملBeyond the Tripartite Cognition-Emotion-Interoception Model of the Human Insular Cortex
Functional MRI studies report insular activations across a wide range of tasks involving affective, sensory, and motor processing, but also during tasks of high-level perception, attention, and control. Although insular cortical activations are often reported in the literature, the diverse functional roles of this region are still not well understood. We used a meta-analytic approach to analyze...
متن کاملFunctional Segregation of the Human Dorsomedial Prefrontal Cortex.
The human dorsomedial prefrontal cortex (dmPFC) has been implicated in various complex cognitive processes, including social cognition. To unravel its functional organization, we assessed the dmPFC's regional heterogeneity, connectivity patterns, and functional profiles. First, the heterogeneity of a dmPFC seed, engaged during social processing, was investigated by assessing local differences i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 149 شماره
صفحات -
تاریخ انتشار 2017